Dalam tugas ke 7 yang di berikan oleh dosen mata kuliah bahasa indonesia memberikan sebuah tugas yaitu mengartikan kata dalam bahasa inggris :
Arming the public with artificial intelligence to counter social bots
Abstract
The
increased relevance of social media in our daily life has been
accompanied by efforts to manipulate online conversations and opinions.
Deceptive social bots—automated or semi‐automated accounts designed to
impersonate humans—have been successfully exploited for these kinds of
abuse. Researchers have responded by developing artificial intelligence
(AI) tools to arm the public in the fight against social bots. Here we
review the literature on different types of bots, their impact, and
detection methods. We use the case study of Botometer, a popular bot
detection tool developed at Indiana University, to illustrate how people
interact with AI countermeasures. A user experience survey suggests
that bot detection has become an integral part of the social media
experience for many users. However, barriers in interpreting the output
of AI tools can lead to fundamental misunderstandings. The arms race
between machine learning methods to develop sophisticated bots and
effective countermeasures makes it necessary to update the training data
and features of detection tools. We again use the Botometer case to
illustrate both algorithmic and interpretability improvements of bot
scores, designed to meet user expectations. We conclude by discussing
how future AI developments may affect the fight between malicious bots
and the public.
Abstrak
Meningkatnya relevansi media sosial
dalam kehidupan kita sehari-hari telah disertai dengan upaya untuk memanipulasi
percakapan dan pendapat online. Bot sosial yang menipu - akun otomatis atau
semi-otomatis yang dirancang untuk meniru manusia - telah berhasil
dieksploitasi untuk jenis pelecehan ini. Para peneliti merespons dengan
mengembangkan alat kecerdasan buatan (AI) untuk mempersenjatai masyarakat dalam
perang melawan bot sosial. Di sini kami meninjau literatur tentang berbagai
jenis bot, dampaknya, dan metode pendeteksian. Kami menggunakan studi kasus
Botometer, alat pendeteksi bot populer yang dikembangkan di Universitas
Indiana, untuk menggambarkan bagaimana orang berinteraksi dengan penanggulangan
AI. Survei pengalaman pengguna menunjukkan bahwa deteksi bot telah menjadi
bagian integral dari pengalaman media sosial bagi banyak pengguna. Namun,
hambatan dalam menafsirkan output alat AI dapat menyebabkan kesalahpahaman
mendasar. Perlombaan senjata antara metode pembelajaran mesin untuk
mengembangkan bot canggih dan penanggulangan yang efektif membuatnya perlu
memperbarui data pelatihan dan fitur alat deteksi. Kami kembali menggunakan
kasus Botometer untuk menggambarkan peningkatan algoritmik dan
interpretabilitas skor bot, yang dirancang untuk memenuhi harapan pengguna.
Kami menyimpulkan dengan membahas bagaimana perkembangan AI di masa depan dapat
memengaruhi pertarungan antara bot jahat dan publik.
lebih lanjut dapat dilihat disini
HEALTH CARE
Medical
error reduction is an international issue, as is the implementation of patient
care information systems (PCISs) as a potential means to achieving it. As
researchers conducting separate studies in the United States, The Netherlands,
and Australia, using similar qualitative methods to investigate implementing
PCISs, the authors have encountered many instances in which PCIS applications
seem to foster errors rather than reduce their likelihood. The authors describe
the kinds of silent errors they have witnessed and, from their different social
science perspectives (information science, sociology, and cognitive science),
they interpret the nature of these errors. The errors fall into two main
categories: those in the process of entering and retrieving information, and
those in the communication and coordination process that the PCIS is supposed
to support. The authors believe that with a heightened awareness of these
issues, informaticians can educate, design systems, implement, and conduct
research in such a way that they might be able to avoid the unintended
consequences of these subtle silent errors.
Translate :
Pengurangan kesalahan medis adalah masalah
internasional, seperti penerapan sistem informasi perawatan pasien (PCIS)
sebagai sarana potensial untuk mencapainya. Sebagai peneliti yang melakukan
studi terpisah di Amerika Serikat, Belanda, dan Australia, menggunakan metode
kualitatif serupa untuk menyelidiki penerapan PCIS, penulis telah menemukan
banyak contoh di mana aplikasi PCIS tampaknya mendorong kesalahan daripada
mengurangi kemungkinannya. Para penulis menggambarkan jenis kesalahan diam yang
telah mereka saksikan dan, dari perspektif ilmu sosial yang berbeda (ilmu
informasi, sosiologi, dan ilmu kognitif), mereka menafsirkan sifat kesalahan
ini. Kesalahan tersebut terbagi dalam dua kategori utama: mereka yang dalam
proses memasukkan dan mengambil informasi, dan mereka yang berada dalam proses
komunikasi dan koordinasi yang seharusnya didukung oleh PCIS. Para penulis
percaya bahwa dengan kesadaran yang meningkat akan masalah-masalah ini, para
informatika dapat mendidik, merancang sistem, mengimplementasikan, dan
melakukan penelitian sedemikian rupa sehingga mereka mungkin dapat menghindari
konsekuensi yang tidak diinginkan dari kesalahan diam yang halus ini.